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SUMMARY 

Power series expansions  (with coefficients obtained by recurrence 

formulas)   are more efficient than other Integration procedures for 

computing concurrently an orbit and the resolvent matrix of Its varia- 

tlonal equations.  In the Restricted Problem of Three Bodies.     For the 

same requirements on accuracy,  the series expansions use only about 

30 per cent of  the computing time  of  the multi-step procedures,  and 

only 12  to 15 per cent of  the  computing time of  the Runge-Kutta-Nystrom 

method. 
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I.     INTRODUCTION 

Steffensen  [1]      has set up recurrence formulas  to integrate by 

power series  the planar Restricted Problem of Three Bodies;  the equations 

of motion were taken in  their Lagrangian form,  in  the jovicentric 

synodical coordinate system.    The series involved were proved to be 

convergent as long as  the initial point is not lying at one of the 

singularities.    Steffensen's algorithm has been used for the first time, 

and quite extensively,  by Rabe in determining the  long period orbits 

around the Lagrangian equilateral centers of libration,  either in the 

Sun-Jupiter system [2]   [3]  or in the Earth-Moon case   [4J.    Fehlberg  [5] 

adapted the method to the Lagrangian equations of  the  Restricted Problem 

in  the barycentric synodical coordinate system; he also extended it   to 

the problem of a charged particle in the field of  a magnetic dipole.     In 

both problems,  integration by recurrent power series proved to be faster 

and more reliable  than other integration procedures. 

Recently Deprit and Price   [6] have brought Steffensen's ideas  into 

play  Ko integrate concurrently  the Hamiltonian equations of the Restricted 

Problem and their related variational equations;   in particular,   they 

propose  to integrate in one package a periodic orbit,   the 4 * 4-matrix 

of its fundamental displacements,   and its characteristic exponents. 

It  amounts  to repeatedly evaluating by recurrence  33 power series;   the 

time step  is variable, being adjusted automatically by  the program anywhere 

1)     Numbers  in square brackets  refer to References,  page 14. 
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wlthln a preasslgned interval.    Error control Is exerted by 5 first 

integrals and 6 bilinear identities derived from the symplectic character 

of the resolvent matrix. 

Numerical integration by recurrent power series is not  a general 

purpose algorithm:    in each case,   the right hand members of  the differen- 

tial system should be manipulated,   and the order itself of  the system 

possibly increased, so as  to give  to the equations  the general form 

considered by Fehlberg.    But such an ad hoc treatment has precisely the 

virtue of suiting  the numerical integration method to  the particular 

problem under investigation.     It often means greater reliability on very 

long spans  of Integration,  unusually large step-sizes,  and an appreciable 

saving in computing time. 

We  checked these benefits  of  the power series  in  the complete 

(orbit + variations)  integration of the Restricted Problem against more 

classical methods,   like the Runge-Kutta-Nystrom algorithm or the multi- 

step procedures.     To reach an accuracy  of at least 9 decimal  figures  for 

the characteristic exponents of a Trojan orbit,   the power series method 

proceeds safely by  tloe steps equal  to about 1.5 canonical units, whereas 

a multi-step method with one predictor and two correctors interpolating 

up to the eighth  difference had to progress by integration intervals 4000 

times smaller.     In  these conditions,  the accumulation of round-off errors 

may result  in inaccurate numerical approximations  to the orbit which in 

turn reflects back most adversely on tht computation of  its  fundamental 

displacements. 
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II.     THE RESTRICTED PROBLEM 

In the canonical units of   nass»   length and time,  and In reference 

to the barycentrlc synodlcal coordinate system  [7],  the planar Restricted 

Problem of Three Bodies  Is described by  the Hamiltonian function 

H " ^(P^+Pj)   - (XP -ypJ   "  (l-y)pT    - WP2 

where 

Pi   -   |(xfu)2  + y2|^, 

p2   -   |(x4.y-l)2   + y2|^. 

Let    u    denote  the  A-dlmensional vector  (x,   y.   p  »  p )»    H       the  gradient 

of  the Hamiltonian    H    In the direction of  the vector    u.    H the uu 

4  x 4-matrix which  Is   the Heuslan of    H;     let us also denote by    R    a 

A  x 4-raatrix whose elements are  functions of   the  time,  and by    J     the 

4  x 4-8ymplectic matrix such that    J      ■ -J.     In these notations,   our 

task can be described as  the numerical Integration of  the  differential 

system of order 20 

(1) 

(2) 

Ü - JH 

R - JH    R, 
uu 

the initial  conditions  at    1 » 0    being such  that    u(0)     does not   lie 

either in  the phase plane  (x ■ -y, y ■ 0)     or    (x »  l-u, y ■ 0)     of 

binary collisions,   and    R(0)    is  the  4 *  4-identity matrix    1^.     The 

vector differential equation (1)  yields  the  orbit, while  the matrix 

equation  (2)  produces  the resoloent  [8]  made of four linearly Independent 
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varlatlons belonging to the orbit. 

Because the Hamlltonlan H Is conservative, the equations admit 

the Jacobl Integral 

(3) H - const, 

along the orbit» and the vector Integral 

(4) RTH - const. 
u 

T 
for the resolvent of the varlational equations. (N.B.    We denote by    R 

the transpose of the matrix    R.) 

Because the equations  (1)  are canonical,  the resolvent    R    is a 

completely canonical matrix, hence at any time along the orbit, 

(5) RJRT - J; 

this matrix identity reduces to 6 independent bilinear relations between 

the fundamental variations along the orbit. 

To the checks supplied by (3), (4) and (5), Danby suggested to add 

the vector identity 

(6) ü(t)  - R(t)ü(0) 

which expresses  that, when    u    is  a solution of  (1),   then    u    is a 

solution of  the varlational equations  (2). 

As  a check on the accuracy of  the numerical integration,  the Jacobl 

integral  (3)   is rather Insensitive,  obviously for the  reason that it depends 
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not on the Cartesian components of the velocity, but only on the square 

of the norm of that vector.    On the other hand (5) has proved a severe 

control of  the accuracy.    For this  reason, we have decided to use 

(7) n •    sup   ||R(t)JRT(t)  - J||* 
0<t<T 

as a measure of  the absolute error In  the numerical Integration.     (N.B. 

The norm   ||A||I      of a matrix    A    Is defined as the sum of  the  absolute 

values of  Its elements.) 

We choose as a testing stand the Trojan orbit In the Sun-Jupiter 
_3 

system (w - 0.953875   x 10    )    having the Initial conditions 

x   -    0.524 460 984 

y    -    0.862 013 960 

p    » -0.850 551 063 rx 
p    -    0.516 376 943; 
y 

this Is an orbit very close to being periodic with period    T •  78.505 049 481. 

Our choice Is dictated by the fact that  this orbit has been determined 

to a high accuracy from another source, namely from Its  representation by 

d'Alembert series  carried up  to the fourteenth power of  the orbital 

parameter  [9]. 

II.     NUMERICAL PROCEDURES 

Among  the available integration methods, we choose first  the 

Runge-Kutta-Nystrom algorithm with  a local truncation    error    0(h5),  h 

being the step-size.    A constant step-size along the entire period    T 

was preferable  to a variable one:     the  former requires only  four 
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intermedlate evaluations of the right hand members of (1)  and (2) 

whereas  the latter Imposes six such evaluations per step If the test for 

adjusting    h    Is to be performed at each point.     The error plot for the 

Runge-Kutta method Is  denoted by    RK    In Figure 2. 

The second procedure was  the multi-step method defined by  the 

Adams-Bashforth predictor 

(8) z    - z    .  + h    /^   b*2    . n        n-1        l<£k+l i n-i 

and the Adams-Moulton corrector 

(9) z    ■ z    ,  + h  /. b.z     .. n        n-1       ^ 1 n-1 

We based our decision to use Adams type formulas mainly on their reliability. 

We assumed that the predictor-corrector methods  for systems of equations 

behave  the same qualitatively as  they do for single equations;  on  this 

basis, we could make  a decision as to the  type of methods we should con- 

sider  [10]; our choice has been confirmed, at least in this case of the 

Restricted Problem, by the experimental results. 

We  decided to use  the corrector (9)   twice per step.    The  results 

showed that Adams-Moulton  algorithms with only one corrector tended to be 

unstable,  especially as    k.    increased.    On the  other hand,  the accuracy 

attained by three correctors was only slightly better  than with  two 

correctors,  for the same    k    and the same step-size. 

The error behaviour for the multi-step method with  two corrections, 

and    k ■  5,  6,   7,  8    successively are summarized in Figure 1.    Because 

k+2 the  local truncation errors of formulas  (8)  and  (9)   are    (Khn   ),    we 



-7- 

would like to use as high a value of    k    as possible and still maintain 

stability.    However, as expected,  instability appears at smaller   h    as 

k    increases.    Nevertheless,  since we are Interested in keeping the error 

measure    n    less than about    10    ,    we were led to choose eventually 

k - 8.    The error plot for    k ■ 8    is denoted by    PC    in Figure 2. 

The third procedure was  the method by recurrent power series  [6]. 

Here we have to evaluate the  coefficients in the 20 power series: 

x(t+h) -   Exn(t)hn"1, 
nil" 

y(t+h) - Ey.COh0"1. 
n^l 

Px(t+h)  -  EPn(t)hn"1. 
n>l 

Pv(t+h) - ZX^h11"1. 
n>l 

for the orbit in its four dimensional phase space, and 

6x(i)(t+h)  -  Vk^Oh"-1, 
n>l 

6y(i)(t+h) - £  ^(Oh11"1. 
n^l 

«P^ct+h) - Eu^u)^"1. 
n^l 

öp^Ct+h) - rv^^COh0-1 

n^l 

for each column    (1 <■ 1, 2,   3,  4)    of the resolvent matrix    R.    In order 

to compute these coefficients,  it has been found practical to Introduce 

13 other auxiliary variables  to be computed also by power series expansions. 

The necessary recurrent formulas can be found in  [11];  they serve to 



-8- 

compute all coefficients in the above series, starting from the values 

taken by the unknowns at time t_0. Tests are incorporated in the pro- 

cedure to decide, with respect to the required accuracy, the number of 

terms to be used in the series, and the step Jh.  Then the variables 

are computed from the series at time to + h, and these new values 

serve to re-initialize the recurrent determination of the power series 

for a new integration step. 

In the problems considered, it turned out that the most practical 

procedure was to keep the number of terms in the series equal to 16 

throughout the entire orbit, and to vary only the time intervals over 

-9 
which the series were employed.  To keep the error measure n < 10 

over a period, only about 50 points were necessary, which means an 

unusually large time step of 1*5 unit. 

III.  COMPARISONS 

The computations were performed in double precision on an IBM 

709^ from programs written in FORTRAN IV. 

In the following figures we have plotted for the various integration 

methods the error measure n on the fundamental variations versus the 

computer time used to calculate the Trojan orbit over its period. We 

mean the actual computation time starting after the data were read in, 

and ending after the computation was complete, but before any printout 

occurred; such a time is measured iy  the machine clock within 120 milli- 

seconds. 
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Such graphs possibly may be criticized on the ground that computer 

time is  too closely dependent on  the programmer and his  ability to convert 

a mathematical procedure into an efficient sequence  of  computer operations. 

We point out, however,  that  the Runge-Kutta method is easy enough to 

program,   the predictor-corrector methods are of moderately greater 

difficulty, whereas  the recurrence by power series  can require more care. 

Thus  our graphs,  if anything,  are biased in favor of  the Runge-Kutta 

and the multi-step methods. 

The  general pattern of  the error plots  for  the particular numerical 

procedures  is as expected.     Basically for all methods,   there exists a 

region—the round-off region—where  the accumulation of rounding errors 

is  the main  contributing factor to the total error;  it   lies  at the right 

hand side  of  the figures,  because it occurs  for too small values of the 

step    h,  hence a significant increase in the amount  of computing time. 

Truncation regions exist  at  the  intermediate values  of  the computing 

time;  here   the main contribution  to the total error is   the accumulation of 

the  local  truncation errors.     In  the round-off  region,   the increase in 

error after the  curves passed a minimum is a direct result of the accumu- 

lation of  rounding errors  in  the numerical solution of  the motion equations 

(1)   rather  than  the variational equations   (2).     This   trend was  indicated 

by  an increasingly inaccurate Jacobi  constant  (3)   in  that region. 

For all the methods,   the  time step can be  chosen so that    n    remains 

-9 
less  than  about  10      on  the  entire period;   the  accuracy  can even be  in- 

creased by  a  factor of  100  for  the methods by  recurrent power series  and 

predictor-corrector.     In  these  conditions  of maximum accuracy  for the  last 

two methods,   the program returned at  the end of  the  orbit a Jacobi  constant 
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(3)  unchanged with respect to the Initial one;   the final varlatlonal 

constants  (4)  were left constant to about 12 significant figures.     The 

orbit came back upon Itself with approximately an equal number of signi- 

ficant digits;  but  the  coordinates at  the end of  the assumed period    T 

differed consistently from the Initial ones by 6 figures on the sixteenth 

place, which Indicated that the period    T    was not determined with sufficient 

precision. 

IV.     CONCLUSION 

From Figure 2,  it  comes out quite obviously that  the power series 

Is  the most economic of  the three methods.     For an interval of    n 

between    10        and    10       ,  the predictor-corrector requires  as much  as 

three times  the computing time employed by  the power series.     In  the same 

domain,  the Runge-Kutta computing time is greater than that  of the power 

series by a factor between 6 and 8. 

These conclusions have been confirmed lately by Dr.  Roger Broucke 

at  the Jet Propulsion Laboratory,  Pasadena,  California. 
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